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Asymptotic behavior of thet expansion
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The asymptotic behavior of a system’s ground-state energy from thet expansion of Horn
and Weinstein has been suggested to have the formE1(t) = E1+

∑
exp(−ant + bn). In the

limit of very larget , this becomesE1(t) = E1 + exp(−a1t + b1). A simple analysis shows
that the parameters area1 = E2 − E1 andb1 = ln[(E2 − E1)|c2|2/|c1|2]. Functions are
introduced which allow determination ofa1, b1 and lower bounds toE1.
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1. Introduction

Horn and Weinstein introduced thet expansion [1], which generates the ground-
state eigenfunction,φ1, of a Hamiltonian,H , from an initial guess,ψ , as follows:

φ1 = lim
t→∞ψ(t),

ψ(t) = e−tH/2ψ
〈e−tH/2ψ |e−tH/2ψ〉1/2

(1)

provided there is nonzero overlap betweenψ andφ1. This is easily seen ifψ is expanded
in terms of the unknown eigenfunctions,φn, ofH :

ψ(t) = e−tH/2
∑
cnφn

〈ψ |e−tH |ψ〉1/2 =
∑
cne−tEn/2φn

〈ψ |e−tH |ψ〉1/2 →t→∞φ1. (2)

As t increases, the low-energy states have more weight compared to the high-energy
states until finally the ground state overwhelms all others ast approaches infinity. Ex-
pand the trial functionψ as a linear combination of the (we assume) complete set of
unknown eigenfunctions,φn, of H (with corresponding eigenvaluesEn). The energy
can then be written as

E1(t) = 〈ψ(t)|H |ψ(t)〉〈ψ(t)|ψ(t)〉 =
〈e−tH/2ψ |H |e−tH/2ψ〉
〈e−tH/2ψ |e−tH/2ψ〉 =

∑ |cn|2Ene−tEn∑ |cn|2e−tEn
. (3)
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Although there have been no generalizations of thet expansion to produce excited-state
eigenfunctions, thet expansion has been generalized to produce sums and differences
of energy levels [2,3]. Since the operator e−tH is not known for most systems, a direct
calculation ofψ(t) is not possible (except fort = 0), and therefore,E1(t) is not directly
calculable.

2. Asymptotic form of E1(t)

A number of researchers have continued the work of Horn and Weinstein [2–5]. In
particular, Cioslowski [4] suggested thatE1(t) could be written in the following form:

E1(t) = E1 +
∞∑
n=1

exp(−ant + bn), (4)

wherean > 0 for all n. Without loss of generality, we assume thatam < an if m < n.
We suggest thatE1(t) asymptotically approachesE1 as

E1(t) = E1+ exp(−a1t + b1). (5)

Such treatment of an exponential series is well known in relating the ionization
energy of atoms and molecules to the exponential decay of electron density; however,
such an approach has been argued as non-rigorous by some [6,7]. Nevertheless, such
treatment is fundamental to thet-expansion. The asymptotic form and constantsa1 and
b1 can be simply determined by expandingE1(t) as a ratio of power series according
to (3):

E1(t) =
∑ |cn|2En exp(−Ent)∑ |cn|2 exp(−Ent) . (6)

The limit ofE1(t) is simplyE1, which can be derived by considering only the first
terms in the power series of (6). Instead of the limit, we are interested in the asymptotic
form. At larget , we consider only the first and second terms of the power series:

E1(t)≈ |c1|2E1e−E1t + |c2|2E2e−E2t

|c1|2e−E1t + |c2|2e−E2t

= |c1|2E1e−E1t + |c2|2E1e−E2t

|c1|2e−E1t + |c2|2e−E2t
+ |c2|2E2e−E2t − |c2|2E1e−E2t

|c1|2e−E1t + |c2|2e−E2t

=E1+ |c2|2(E2− E1)e−E2t

|c1|2e−E1t + |c2|2e−E2t

≈E1+ |c2|2
|c1|2 (E2− E1)e

−(E2−E1)t . (7)

Equating the final result with (5) shows thata1 = E2− E1 and b1 =
ln[(E2 − E1)|c2|2/|c1|2]. A similar analysis can be done keeping the firstn terms of
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the power series and gives the general but incorrect results:an = En − E1 andbn =
ln[(En − E1)|cn|2/|c1|2]. That these are incorrect is seen by their substitution in (4) for
t = 0. Thus, our derivation ofan andbn for largen is surely incorrect, although we
believe the limit ofE1 and the asymptotic form witha1 andb1 is correct. Fora1 at least,
the asymptotic slopea1 = E2 − E1 can be rigorously proven if it is first assumed that a
linear asymptotic form results:

ln
[
E1(t)− E1

] = −a1t + b1. (8)

The following two bounds on (8) are linear with identical slopes,−(E2− E1):

ln(E1(t)− E1)= ln

(∑ |cn|2(En − E1)e−Ent∑ |cn|2e−Ent

)

� ln

(∑ |cn|2(En − E1)e−E2t

|c1|2e−E1t

)

= ln
(∑
|cn|2|c1|−2(En − E1)

)
− (E2− E1)t, (9)

ln
(
E1(t)− E1

)
� ln

( |c2|2(E2− E1)e−E2t

e−E1t
∑ |c1|2

)

= ln
(|c2|2(E2− E1)

)− (E2 − E1)t. (10)

If the asymptotic form is linear, it must have this same slope to remain within the
two bounds for infinitely larget . Thus, we have more justification for proposinga1 =
E2−E1. Further justification for our proposed value ofb1 is just that it lies between the
t = 0 intercepts of (9) and (10).

3. Discussion

Definingf (t, ε) = ln[E1(t) − ε], it is straightforward to show that (i) ifε is an
upper bound toE1 then f (t, ε) goes to negative infinity and then for somet (when
E1(t) = ε) becomes indeterminate; and (ii) ifε is a lower bound toE1 thenf (t, ε)
asymptotically approaches the finite negative number ln[E1 − ε]. Thus, ifE1(t) can
be calculated to sufficient accuracy at larget , where ln[E1(t) − E1] is nearly linear,
then upper bounds (in addition toE1(t)) and, more importantly, lower bounds can be
determined by varyingε and observing the larget behavior off (t, ε): negative curvature
indicates an upper bound while positive curvature indicates a lower bound.

Direct measurement of the slope of the best (i.e., most linear)f (t, ε) at larget di-
rectly gives an estimate of the differenceE2−E1, and indirectly ofE2 using an accurate
estimate ofE1 (e.g., from simplyE1(t) or ε). Extension of the linear asymptotic form
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to t = 0 gives an estimate of the ratio|c2|2/|c1|2 throughb1. Although the difference
E2 − E1 can be obtained fromf (t, ε), it is more readily apparent using

g(t, ε) = −df (t, ε)

dt
t→∞−→ a1 = E2− E1. (11)

This functiong(t, ε) is very similar to the functionD0(t) introduced by Weinstein and
Horn and generalized by Markoš and Olejník. Their limits are the same whenε = E1,
however, their function forms are different:

D0(t)=− d

dt

(
ln

(
− d

dt
E1(t)

))
= 〈H

3〉〈H 0〉2 − 3〈H 0〉〈H 1〉〈H 2〉 + 2〈H 1〉3
〈H 1〉[〈H 2〉〈H 1〉 − 〈H 1〉2] , (12)

g(t, ε)=− d

dt

(
ln
[
E1(t)− ε

]) = 〈H 2〉〈H 0〉 − 〈H 1〉2
〈H 0〉〈H 1〉 − ε〈H 0〉2 . (13)

Our functiong(t, ε) is formally simpler, although it requires knowledge ofE1 to give
the correct limit. However, by changingε one can determineE1 at the same time one
is determiningE2 − E1. If and only if ε = E1, theng(t, ε) will be asymptotically
constant at some nonzero number. By the same reasoning used forf (t, ε), (i) if ε is
an upper bound toE1 theng(t, ε) goes to positive infinity and then for somet (when
E1(t) = ε) becomes indeterminate; and (ii) ifε is a lower bound toE1 theng(t, ε)
asymptotically approaches zero. Methods to approximateE1(t) have been thoroughly
discussed by Stubbins [5] and can also be applied tof (t, ε) andg(t, ε). Althoughg(t, ε)
givesE2−E1 andE1 directly,f (t, ε)may still be useful to estimate the ratio|c2|2/|c1|2
at thet = 0 intercept usingb1.

We can also compare these two formulae for the energy difference with that from
the Lanczos method which is a variational calculation with a two-dimensional basis set
(ψ andHψ):

E2− E1≈
(〈
H 0〉2〈H 3〉2+ 4

〈
H 0〉〈H 2〉3+ 4

〈
H 3〉〈H 1〉3

−3
〈
H 1
〉2〈
H 2
〉2− 6

〈
H 0
〉〈
H 1
〉〈
H 2
〉〈
H 3
〉)1/2/(

2
(〈
H 0
〉〈
H 2
〉− 〈H 1

〉2))
. (14)

Comparison of (12)–(14) shows thatD0(t) and the variationally-calculated energy
difference both require the expectation value ofH 3 while g(t, ε) does not. In the event
that expectation values of powers ofH are difficult to calculate, theng(t, ε) can provide
an estimate of the energy difference fort = 0 and some guess atE1 by only calculating
〈H 〉 and〈H 2〉. However, thet expansion is best suited for cases where such expectation
values are calculable because they are used to establish larget behavior of (12) and (13).

Simple tests with Hamiltonians where exp(−tH ) is known, for example, the
particle-in-a-box Hamiltonian, easily support our determination ofa1 andb1 and illus-
trate the ability to boundE1 from above and below. Figure 1 showsf (t, ε) and its
asymptotic form−a1t + b1 for the trial functionψ = (1/10)1/2φ1 + (4/10)1/2φ2 +
(5/10)1/2φ3 for a particle in a box of lengthπ bohr and the linear function−a1t + b1.
The approximate energyε ranges from the exactE1 to variations by±1%,±5%, and
±10% giving upper and lower bounds. Figure 2 shows the same, but withg(t, ε) and its
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Figure 1. f (t, ε) for the trial functionψ = (1/10)1/2φ1 + (4/10)1/2φ2 + (5/10)1/2φ3 for a particle in
a box of lengthπ bohr. The approximate energyε ranges from the exactE1 to variations by±1%,±5%,

and±10%.

Figure 2.g(t, ε) for the trial functionψ = (1/10)1/2φ1 + (4/10)1/2φ2 + (5/10)1/2φ3 for a particle in a
box of lengthπ bohr. The approximate energyε ranges from the exactE1 to variations by±1%,±5%,

and±10%.

asymptotic forma1 in place off (t, ε) and−a1t + b1. Also shown in figure 2 isD0(t)

for comparison. In both figures, the asymptotic form is reached very quickly. Note that
bothD0(t) andg(t, ε) do not approachE2−E1 monotonically. This is in stark contrast
to the monotonic approach ofE1(t) to E1 and the overlap〈ψ(t)|φ1〉/〈ψ(t)|ψ(t)〉1/2 to
unity.
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The precision of the upper bounds does not allow an improvement upon the up-
per bounds obtained directly fromE1(t); however, the presence of the lower bounds is
exciting since even reasonable lower bounds are sometimes very difficult to determine.
In addition, the precision is fair even at lowt . Of course, to get lower bounds, one must
be able to approximateE1(t) accurately – again see Stubbin’s work [5]. Many methods
to approximateE1(t) make use of expectation values ofHn; thus,〈H 2〉 and〈H 〉 will
probably be available and can be used to bound an eigenvalue with the variance:

〈H 〉 −
√〈
H 2
〉− 〈H 〉2 � En � 〈H 〉 +

√〈
H 2
〉− 〈H 〉2. (15)

At first the bound (15) may seem more advantageous than ours since we need not worry
whether the asymptotic form (linear or constant) has been sufficiently reached. Unfor-
tunately, (15) can only be rigorously applied toE1 if it is known that there is only one
eigenvalue in this bounded range – otherwise the lower bound may apply to any one of
possibly many eigenvalues in this range. Our asymptotic bounds, however, avoid this
ambiguity and always give lower bounds toE1 (assuming there is nonzero overlap ofψ

with φ1).
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