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Asymptotic behavior of the expansion
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The asymptotic behavior of a system'’s ground-state energy fromeaRpansion of Horn
and Weinstein has been suggested to have the fyrn) = E1 + > exp(—ant + by). In the
limit of very larger, this become$1(t) = E1 + exp(—azyt + b1). A simple analysis shows
that the parameters arg = E» — E1 andby = In[(E2 — Eq)|c2|?/|c1/2]. Functions are
introduced which allow determination ef, b1 and lower bounds t&.
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1. Introduction

Horn and Weinstein introduced theexpansion [1], which generates the ground-
state eigenfunctionp,, of a Hamiltonian,H, from an initial guessy, as follows:

¢1 = lim (1),
eftH/Zw (1)
(e 1H 2y | e 1H/2y)1/2

Y1) =

provided there is honzero overlap betwegeandg;. This is easily seen iy is expanded
in terms of the unknown eigenfunctions,, of H:

Y catn _ D cn€ B2,
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As t increases, the low-energy states have more weight compared to the high-energy
states until finally the ground state overwhelms all others &sproaches infinity. Ex-
pand the trial function) as a linear combination of the (we assume) complete set of

unknown eigenfunctionsp,, of H (with corresponding eigenvalues,). The energy
can then be written as

(WOIHIY@®)  (e'"2y|Hle™"2y) Y |ea*Ee '™
(@O (1)) (etH/2yr|etHI2yr) > lenl2eEn
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Ei(t) =

(3)
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Although there have been no generalizations ofrtbgpansion to produce excited-state
eigenfunctions, the expansion has been generalized to produce sums and differences
of energy levels [2,3]. Since the operator’éis not known for most systems, a direct
calculation ofy (¢) is not possible (except far= 0), and thereforeE(¢) is not directly
calculable.

2. Asymptotic form of E{(t)

A number of researchers have continued the work of Horn and Weinstein [2-5]. In
particular, Cioslowski [4] suggested th&t(z) could be written in the following form:

Ey(t) = E1+ ) exXp(—ayt + by), (4)
n=1
wherea, > 0 for all n. Without loss of generality, we assume that < a, if m < n.
We suggest thak, () asymptotically approachds, as

Ei(t) = E1 + exp(—axt + by). (5)

Such treatment of an exponential series is well known in relating the ionization
energy of atoms and molecules to the exponential decay of electron density; however,
such an approach has been argued as non-rigorous by some [6,7]. Nevertheless, such
treatment is fundamental to theexpansion. The asymptotic form and constaitand
b1 can be simply determined by expandifg(z) as a ratio of power series according
to (3):

Z |Cn|2En exp(—E,t) (6)
> |enl? exp(—E,t)
The limit of E1(¢) is simply E1, which can be derived by considering only the first

terms in the power series of (6). Instead of the limit, we are interested in the asymptotic
form. At larget, we consider only the first and second terms of the power series:

Eq(t) =

le1|2E1e 1 + e |2 B0 F2!
|c1|?eF1f 4 |co|2e E2!

Ei(t)~

_c1PE1€ 5 4 [P Ere ™ |eoPEe " — oo Ere ™
|c1|?eF1f 4 |co|2e E2! |c1]2e~E1f 4 |cp|2e E!

|lc2|?(E — Ep)eE2
|c1)2e Ert 4 |cp|2e B2t

—E;+

2
~ B+ 2 (5, - e, (7)
|c1]?

Equating the final result with (5) shows that; = E, — E; and b, =
IN[(E> — E1)|c2|?/|c1]?]. A similar analysis can be done keeping the firderms of
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the power series and gives the general but incorrect resylts: E, — E; andb, =
IN[(E, — E1)|ca|?/|c1|?]. That these are incorrect is seen by their substitution in (4) for
t = 0. Thus, our derivation of,, andb, for largen is surely incorrect, although we
believe the limit ofE; and the asymptotic form witl, andb, is correct. For; at least,

the asymptotic slope; = E, — E; can be rigorously proven if it is first assumed that a
linear asymptotic form results:

|n[E1(l‘) — E]_] = —aqt + bq. (8)
The following two bounds on (8) are linear with identical slope$E, — E1):

Y leal?(E, — Epe B!
Z |Cn|2e—Ent

_ —Eot
In(ZICnI (E, — Eye )

|c1|%e~Ext

IN(E1(¢t) — Ep) = In(

=n(Y" leaPles| (B, — Ev)) — (B2 — Er, (©)

(lczl (Ez — E1)9E2’>

— E1t Z |C1|2
=In(lc2|*(E2 — E1)) — (E2 — Eq)t. (10)

IN(E1(1) — E1) = 1n

If the asymptotic form is linear, it must have this same slope to remain within the
two bounds for infinitely large. Thus, we have more justification for proposing =

E, — E1. Further justification for our proposed valueigfis just that it lies between the

t = 0 intercepts of (9) and (10).

3. Discussion

Defining f(t, &) = IN[E1(¢) — ], it is straightforward to show that (i) ¥ is an
upper bound taE; then f (¢, €) goes to negative infinity and then for somdéwhen
E1(t) = ¢) becomes indeterminate; and (ii)dfis a lower bound taE; then f(z, ¢)
asymptotically approaches the finite negative numbgE4n- ¢]. Thus, if E;(¢) can
be calculated to sufficient accuracy at laigavhere IHE,(t) — E1] is nearly linear,
then upper bounds (in addition #(r)) and, more importantly, lower bounds can be
determined by varying and observing the largebehavior off (z, ¢): negative curvature
indicates an upper bound while positive curvature indicates a lower bound.

Direct measurement of the slope of the best (i.e., most lingat)e) at larger di-
rectly gives an estimate of the differenEge — E, and indirectly ofE, using an accurate
estimate ofE; (e.g., from simplyE1(¢) or ¢). Extension of the linear asymptotic form
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to r = 0 gives an estimate of the ratje,|?/|c1|? throughb,. Although the difference
E, — E; can be obtained fronf (¢, ¢), it is more readily apparent using

dfg; 8) t—>_o)oa1 = E2 - El. (11)

This functiong(z, ) is very similar to the functiorDy(¢) introduced by Weinstein and
Horn and generalized by MarkoS and Olejnik. Their limits are the same whkerE,
however, their function forms are different:

g(l’,é‘) = -

_d d (HY)(HO) — 3(HO)(HY)(H?) + 2(H")3
Do) = _E('n(_aEm)) = (HO(H?)(HY) — (HY7] - (12)
d (H2)(HO) — (H1)2
g(t, &)= —E(In[El(t) —¢]) = (O (HE) — o (HO2" (13)

Our functiong(z, ¢) is formally simpler, although it requires knowledge &f to give
the correct limit. However, by changingone can determin&; at the same time one
is determiningE, — E;. If and only if ¢ = Ej, theng(z, &) will be asymptotically
constant at some nonzero number. By the same reasoning us¢d fep, (i) if ¢ is
an upper bound t&; theng(z, ¢) goes to positive infinity and then for sornéwhen
Eq1(t) = &) becomes indeterminate; and (i) dfis a lower bound taE; theng(z, ¢)
asymptotically approaches zero. Methods to approxintate) have been thoroughly
discussed by Stubbins [5] and can also be applief{toe) andg(z, €). Althoughg(z, ¢)
givesE, — E1 andE; directly, f (¢, £) may still be useful to estimate the rafie|?/|c1|?
at ther = 0 intercept using;.

We can also compare these two formulae for the energy difference with that from
the Lanczos method which is a variational calculation with a two-dimensional basis set

(v andHy):
Ey— E1~ <(H0>2(H3)2 n 4(H0>(H2>3 n 4(H3>(H1>3

P — e () (2~ (1)) (14

Comparison of (12)—(14) shows thBy(¢) and the variationally-calculated energy
difference both require the expectation valuekbt while g(z, €) does not. In the event
that expectation values of powers®fare difficult to calculate, thep(z, £) can provide
an estimate of the energy difference foe 0 and some guess &t by only calculating
(H) and(H?). However, the expansion is best suited for cases where such expectation
values are calculable because they are used to establish lzebavior of (12) and (13).

Simple tests with Hamiltonians where &xp H) is known, for example, the
particle-in-a-box Hamiltonian, easily support our determination;ofndb; and illus-
trate the ability to boundz; from above and below. Figure 1 showsz, ¢) and its
asymptotic form—ast + by for the trial functiony = (1/10)%2¢, + (4/10)Y2¢, +
(5/10)%2¢5 for a particle in a box of lengtlr bohr and the linear function-ait + b;.
The approximate energyranges from the exadt; to variations by+1%, +5%, and
+10% giving upper and lower bounds. Figure 2 shows the same, bugwith) and its
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Figure 1. f(z, ) for the trial functiony: = (1/101/2¢1 + (4/10/1/2¢, + (5/10)1/2¢5 for a particle in
a box of lengthr bohr. The approximate energyranges from the exadi4 to variations by+1%, +5%,
and+10%.
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Figure 2.g(t, ¢) for the trial functiony = (1/10)Y/2¢1 + (4/10)1/2¢, + (5/10)1/2¢5 for a particle in a
box of length bohr. The approximate energyranges from the exadi4 to variations by+1%, +5%,
and+10%.

asymptotic formu; in place of (¢, ¢) and —ayt + b1. Also shown in figure 2 iDg(r)

for comparison. In both figures, the asymptotic form is reached very quickly. Note that
both Dqy(¢) andg(z, ¢) do not approactk, — E; monotonically. This is in stark contrast

to the monotonic approach @, () to E; and the overlagy (¢)|¢1) /(v (1) |¥ (1))Y? to

unity.
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The precision of the upper bounds does not allow an improvement upon the up-
per bounds obtained directly froi, (z); however, the presence of the lower bounds is
exciting since even reasonable lower bounds are sometimes very difficult to determine.
In addition, the precision is fair even at lawOf course, to get lower bounds, one must
be able to approximat&,(¢) accurately — again see Stubbin’s work [5]. Many methods
to approximateE1(r) make use of expectation values Bf'; thus, (H?) and (H) will
probably be available and can be used to bound an eigenvalue with the variance:

(H) —\/(H?) — (H)2 < E, < (H) + \/(H?) — (H)2. (15)

At first the bound (15) may seem more advantageous than ours since we need not worry
whether the asymptotic form (linear or constant) has been sufficiently reached. Unfor-
tunately, (15) can only be rigorously applied &g if it is known that there is only one
eigenvalue in this bounded range — otherwise the lower bound may apply to any one of
possibly many eigenvalues in this range. Our asymptotic bounds, however, avoid this
ambiguity and always give lower boundsig (assuming there is nonzero overlapyof
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